

Safety-related parts of control systems ISO 13849-1 Bangalore, India Pune, India

Klaus-Dieter Becker BGETEM

www.issa.int

Functional safety, Dipl.-Ing. Klaus-Dieter Becker

Overview

EN ISO 13849 part 1:

- Scope
- Motivation for the revision of ENISO 13849-1
- overview over the new concept
- Performance Level
- introduction of the designated architectures"
- requirements for the safety related software
- Use of the standard
- Combination SRP/C
- New requirements (revision)

Steps to performance level

- 1. Specification of the safety functions
- 2. Determination of the required PL (PL_r)
- 3. Category selection for each Subsystem
- 4. Modeling the safety-related block diagram
- 5. Determination of reliability at component & structure level
- 6. Determination of the diagnostic coverage DC
- 7. Consideration of the CCF
- 8. Determination of PL (table in Appendix K
- 9. Verification whether the achieved $PL \ge PLr$
- 10. Implementation of software requirements according to EN ISO 13849-1 paragraph 7
- 11. Measures to avoid systematic faults
- 12. Validation

Requirements of control systems (new regulation machinery, Annex III)

1.2.1 Safety and reliability of control system

Control systems shall be designed and constructed in such a way that:

- they can withstand, where appropriate to the circumstances and the risks, the intended operating stresses and intended and unintended external influences, including reasonably foreseeable malicious attempts from third parties leading to a hazardous situation;
- a fault in the hardware or the logic of the control system shall not lead to hazardous situations;
- errors in the control system logic shall not lead to hazardous situations;

Requirements of EN 60204-1 clause 9.4.1

Where failures or disturbances in the electrical equipment can cause a hazardous condition or damage to the machine or to the work in progress, appropriate measures shall be taken to minimize the probability of the occurrence of such failures or disturbances

The required measures and the extent to which they are implemented, either individually or in combination, depend on the level of risk associated with the respective application (see 4.1).

- EN 954-1 has no requirements for complex electronics and programmable electronic systems
- no causal relationship between categories and risk reduction
- no requirements for the reliability for the components

Risk reduction from the safety function carry out by SRP/CS:

- The strategy for the risk reduction at the machine is given in ISO 12100, clause 6
- For each selected safety function to be carry out by a SRP/CS, a required performance level (PLr) shall be determined and documented.
- The contribution does not cover the overall risk of machinery under control
- By the ENISO 13849-1 can the amount of risk reduction by design and safeguarding techniques which are realized by control systems, be assessed

goal:

In order that the safety function can be performed by the control system, the following has to be considered

- Determination of required characteristics of the safety related part of control systems (SRP/CS) and
- Perform an "Assessment plan " (Performance Level = PL) for the control systems
- As the result of the assessment plane (Performance Level = PL) it is possible to compare the quality of the control systems, including the software

PL illustrates the performance of the control systems.

•	Category: Graduation of the safety of control systems in terms of resistance against faults
	CCF: Common Cause Failure
	PES: Programable electronic systems
•	PLr: performance level (PL) in order to achieve the required risk reduction for each safety function
1	PL: Discrete level used to specify the ability of safety related parts of control systems to perform a safety function under foreseeable conditions
	MTTF _D : mean time to dangerous failure
	DC: measure of the effectiveness of diagnostic
1	B _{10D} : number of cycles until 10% of the componets fail dangeroursly (for pneumatic and electromechanical components)
	SRP/CS: safety part of control systems

The key to success: Performance Level PL

PL: discrete level to specify the ability of safety-related parts of control systems to perform a safety function under foreseeable conditions

PL is determined:

- Category (Architecture)
- MTTF_D Mean Time to Dangerous Failure
- DC Diagnostic coverage (Tests)
- CCF common cause failure
- Measures against systematic failure
- Software

failures of different items, resulting from a single event, where these failures are not consequences of each other

Performance Level (PL)	Max. toleranced failure degree:
а	1 dangerours failure per 10.000 h
b	1 dangerours failure per 30.000 h
C	1 dangerours failure per 100.000 h
d	1 dangerours failure per 1.000.000 h
e	1 dangerours failure per 10.000.000 h

Functional safety ISO 13849-1, Dipl.-Ing. Klaus-Dieter Becker

Functional safety ISO 13849-1, Dipl.-Ing. Klaus-Dieter Becker

Steps to performance level

- 1. Specification of the safety functions
- 2. Determination of the required PL (PL_r)
- 3. Category selection for each Subsystem
- 4. Modeling the safety-related block diagram
- 5. Determination of reliability at component & structure level
- 6. Determination of the diagnostic coverage DC
- 7. Consideration of the CCF
- 8. Determination of PL (table in Appendix K
- 9. Verification whether the achieved $PL \ge PLr$
- **10.** Implementation of software requirements according to EN ISO 13849-1 paragraph 7
- 11. Measures to avoid systematic faults
- 12. Validation

Functional Safety needs Safety Functions Selection of Safety Function (SF) from Specification: Requirements for SF risk analysis Determination of PLr (EN ISO 12100-1Design, Identification SRP/CS **Evaluation of PL** DCava CCF Category MTTF_d Software and Systematic Failure $PL \ge PLr$ no yes back to Validation

risk

analysis

All SFs?

yes

yes

no

no

1. Safety requirements specification

term	name of the safety function		
Triggering event	the initiation event that triggers the safety function		
Safety reaction	What is the safety related reaction		
Operation mode	the mode(s) of operation during which the safety function is to be active		
PLr	the required performance level PL _r for each safety function		
frequency	How often is the safety related function requested		
Stopping time	the response time for the machine to achieve a safe state after the demand is made upon the safety function e.g., the overall system stopping performance (reaction time plus stopping time) according to ISO 13855		
Behaviour by loss of the power	the behaviour of the machine on the loss of power		

1. Safety requirements specification

term	Name of the safety function
priority	Is the safety function prior or subordinate to other safety functions?
Addional safety function	Does the use of the safety function require further active safety functions?
Addional parameters	What kind of parameters have to be taken to account?
fault-detecting measures	Which diagnostic measures must be taken into account?
reaction reaction activities	What measures are required for fault detection?

1. Specification of each safety function

Determination of the safety function

- emergency stop circuits
- electric interlocking circuits
- prevention of unexpected start up
- muting
- Imitation of speed and travel under hold-to-run control
- throttle valve control on continuous flow driers
- safe stops

Review of the safety requirement specification

The safety requirements specification shall be verified before starting the design, since every other activity is based on these requirements. The check shall assure that all safety functions are specified to achieve the intended risk reduction at the machine.

Steps to performance level

- 1. Specification of the safety functions
- 2. Determination of the required PL (PL_r)
- 3. Category selection for each Subsystem
- 4. Modeling the safety-related block diagram
- 5. Determination of reliability at component & structure level
- 6. Determination of the diagnostic coverage DC
- 7. Consideration of the CCF
- 8. Determination of PL (table in Appendix K
- 9. Verification whether the achieved $PL \ge PLr$
- **10.** Implementation of software requirements according to EN ISO 13849-1 paragraph 7
- 11. Measures to avoid systematic faults
- 12. Validation

Functional safety ISO 13849-1, Dipl.-Ing. Klaus-Dieter Becker

2. Determination of the PLr

The Easy Method: Risk Analysis by Risk Graph

Note: In case of no other justification F2 should be chosen, if the frequency is higher than once per 15 minutes.

Functional safety ISO 13849-1, Dipl.-Ing. Klaus-Dieter Becker

precalculated architecture: designated architectures

"designated architectures", typ. Designed Architectures

- Already precalculated typical structures with inputs, logic and outputs (I/L/O)
- Conditions by the quantification:
 - Mission time 20 years
 - Constant failure rates within the mission time

"Typical diagramme for failure rate over time - called a "bathtub curve"

assembly fault

- manufacturing
 defect
- materials fault
- design fault
- fatique fracture
- ageing
- wear
- dimples
- operation fault
- soil particle
- service faults

Thus a component's lifetime can be divided into three periods:

- Infant mortality, precocious failures.
- Useful life, failure rates significantly constant.
- Wear out, wear failures.

Steps to performance level

- 1. Specification of the safety functions
- 2. Determination of the required PL (PL_r)
- 3. Category selection for each Subsystem
- 4. Modeling the safety-related block diagram
- 5. Determination of reliability at component & structure level
- 6. Determination of the diagnostic coverage DC
- 7. Consideration of the CCF
- 8. Determination of PL (table in Appendix K
- 9. Verification whether the achieved $PL \ge PLr$
- **10.** Implementation of software requirements according to EN ISO 13849-1 paragraph 7
- 11. Measures to avoid systematic faults
- 12. Validation

3./4. Design of the safety related block diagram and determination of the Categories

Categorie	Short description	System behaviour	Principle applied to achieve safety
Categorie	Short description	System benaviour	-
			By selection of com-
В	Control system according to state	A fault can lead to the loss	ponents and safety
	of the art	safety	principles
	Use of well-tried safety principles	As described for category	
1		B, but with higher reliablity	
	Checking of safety function by the	Possible loss of safety	
2	machine control system	function between checks	
	Redundancy with partial fault detec-		By structure and de-
	tion, as far as practicable according	A fault does not lead to the	sign of the control
3	to the state of the art	loss of safety	system
	Self-monitoring, faults are detected	multiple faults do not lead	
4	in time	to the loss of safety	

Die EN ISO 13849-1 provides 5 designated archituctures: category B 2 3 4 maximum maximum maximum maximum maximum reachable: reachable: reachable: reachable: reachable: PL = ePL = bPL = CPL = dPL = e

Functional safety ISO 13849-1, Dipl.-Ing. Klaus-Dieter Becker

- their components, shall be designed, constructed, selected, assembled and combined in accordance with relevant standards so that they can withstand the expected influence
- Zero fault tolerance
- Mainly characterised by selection of components
- MTTF_D = low to medium

Example for category B

- Selection of degree of protection
- Correct selection of the cross section
- Selection of cable insulation
- Selection of the colours of indication instrument
- Selection of measures against environments influence
- Selection of protection measures
- Correct dimensioning of motors

- Requirements of B shall apply
- Well-tried components and well-tried safety principles shall be used
- Zero fault tolerance but better than category B
- Mainly characterised by selection of components
- $MTTF_D = high$
- Dc_{cav} = non

Functional safety ISO 13849-1, Dipl.-Ing. Klaus-Dieter Becker

Example for category 1

- Separation distance
- Over–dimensioning
- Bonding of the controlsystem
- Emergency stop device (EN 418)
- Circuit breaker (EN 60947-2)
- fuse (EN 60269-1)
- Transformer (EN 60741)
- Fault avoidance in cables
- Positive mode actuation
- Positive mechanically linked contacts
- Limitation of electrical parameters

Functional safety ISO 13849-1, Dipl.-Ing. Klaus-Dieter Becker

Steps to performance level

- 1. Specification of the safety functions
- 2. Determination of the required PL (PL_r)
- 3. Category selection for each Subsystem
- 4. Modeling the safety-related block diagram
- 5. Determination of reliability at component & structure level
- 6. Determination of the diagnostic coverage DC
- 7. Consideration of the CCF
- 8. Determination of PL (table in Appendix K
- **9.** Verification whether the achieved $PL \ge PLr$
- **10.** Implementation of software requirements according to EN ISO 13849-1 paragraph 7
- 11. Measures to avoid systematic faults
- 12. Validation

Functional safety ISO 13849-1, Dipl.-Ing. Klaus-Dieter Becker

Steps to performance level

- 1. Specification of the safety functions
- 2. Determination of the required PL (PL_r)
- 3. Category selection for each Subsystem
- 4. Modeling the safety-related block diagram
- 5. Determination of reliability at component & structure level
- 6. Determination of the diagnostic coverage DC
- 7. Consideration of the CCF
- 8. Determination of PL (table in Appendix K
- 9. Verification whether the achieved $PL \ge PLr$
- 10. Implementation of software requirements according to EN ISO 13849-1 paragraph 7
- 11. Measures to avoid systematic faults
- 12. Validation

5. Calculation of MTTF_D

	Some Definitions: MTTF _D		
MTTF _d : mean value of operation time where a <u>single</u> channel of the system is expected to have no <u>dangerous</u> failure			
	denotation	range of $MTTF_D$	
	low	3 years ≤ MTTF _D < 10 years	
	medium	10 years ≤ MTTF _d < 30 years	
	high	$30 \text{ years} \le \text{MTTF}_{d} \le 100$ years	

MTTF_D pneumatic & (elekctronic-) mechanical Components

determination of the components $MTTF_{D}$ -values

- use manufacturer's data;
- use methods in Annexes C and D;
- choose ten years.

MTTF_D pneumatic & (elektro-)mechanical Components

Good engineering practices method: Worst Case Werte

For <u>pneumatic</u>, <u>mechanical</u>, <u>electromechanical</u> <u>components</u>, <u>position switches etc</u>.

- The components are manufactured according to basic and well-tried safety principles in accordance with ISO 13849-2:2012, or the relevant standard (see Table C.1) for the design of the component (confirmation in the data sheet of the component).
- The manufacturer of the component specifies the appropriate application and operating conditions for the user.
- The design of the SRP/CS fulfils the basic and well-tried safety principles according to ISO 13849-2:2015, for the implementation and operation of the component.

assumptions: $B10_D = 2^*B10$ (50% dangerous faults)

MTTF_d pneumatischer & (electro-)mechanical components

Mechanical components		MTTF _D = 150 years
Hydraulic components		MTTF _D = 150 years
Pneumatic components		B _{10D} = 20.000.000
Relays and Contactor, Näherungsschalter	Small load Maximum load	$B_{10D} = 20.000.000 B_{10D} = 400.000$
Main contactor	Small load Rated load	$B_{10D} = 20.000.000$ $B_{10D} = 2.000.000$
Position switch (with separated actuator, Interlocking)		B _{10D} = 20.000.000 (B _{10D} = 2.000.000)
Enabeling switch*		B _{10D} = 100.000
Emergency stop devices* (maximum load)		$B_{10D} = 100.000$ (B_{10D} = 6.050)

MTTF_D pneumatic & (electro-)mechanical components

e.g. pneumatic valves, relays, contactors, position switches, cam of position switches)

- Determination of the mean cycle of machine
- the manufacturers of these kinds of components only give the mean number of cycles until ten percent of the components fail dangerously (B_{10d}).
- method to calculate a MTTF_d for components by using B_{10d}:

Functional safety ISO 13849-1, Dipl.-Ing. Klaus-Dieter Becker

МТТ	ſF _d : mea	n value of		To (dangerou where a <u>single</u> chanr ilure	
Components	Туріса	al Values	Basic and well-tried safety principles ISO 13849-2:2003	Typical MTTF _d (y) or B _{10d} (cycle) values	
De	Mechanica	I components	Tables A.1 and A.2	MTTF _d = 150 y	0
0	Hydraulic c	components	Tables C.1 and C.2	MTTF _d = 150 y	
Ē	Pneumatic	components	Tables B.1 and B.2	B _{10d} = 20 000 000	$\sum_{i=1}^{N} 1$ $\sum_{i=1}^{\tilde{N}} n_i$
Col	Relays and relays with (mechanica	small load	Tables D.1 and D.2	$B_{10d} = 20\ 000\ 000 \\ MTTF \\ _{d} = \frac{B_{10\ d}}{0.1 \cdot n_{op}}$	$\frac{1}{MTTFD} = \sum_{j=1}^{\tilde{N}} \frac{n_j}{MTTF_{D,j}}$
		Classe	S	Symmetris	
	low		$ TTF_d < 10 \text{ years} $	$\begin{array}{c c} MTTF_{D} & \frac{2}{3} \\ MTTF_{DC1} + \end{array}$	$MTTF_{DC 2} - \frac{1}{\frac{1}{MTTF_{DC 1}} + \frac{1}{MTTF_{DC 2}}} \right]$
	high		$1TTF_d \le 100 \text{ years}$	System	

Steps to performance level

- 1. Specification of the safety functions
- 2. Determination of the required PL (PL_r)
- 3. Category selection for each Subsystem
- 4. Modeling the safety-related block diagram
- 5. Determination of reliability at component & structure level
- 6. Determination of the diagnostic coverage DC
- 7. Consideration of the CCF
- 8. Determination of PL (table in Appendix K
- 9. Verification whether the achieved $PL \ge PLr$
- **10.** Implementation of software requirements according to EN ISO 13849-1 paragraph 7
- 11. Measures to avoid systematic faults
- 12. Validation

Diagnostic Coverage DC

probability of detected dangerous failures probability of total dangerous failures

Example: Dynamic testing of inputs using cyclic testing procedure

medium

DenotationValues of DCnoneDC < 60%low $60\% \leq DC < 90\%$ medium $90\% \leq DC < 99\%$ high $99\% \leq DC$

Other sources for DC-Values

DIN EN ISO 13489-1 list in chart E.1 the efficiency of diagnostic measures

Measure	Maximum of Diagnostic coverage	Comment
Sensors (process discover failures)	low to middle (depends on the rate of demands)	depends on the DC for failures
switch with positive mechanically linked contacts (plausibility-check)	high	
Actors (redundand switch- off circuit with supervising)	middle	
Logic Dynamic Principles	high	All parts of the logic asume the change on-off-on in the case of demand of safety (function)

Monotoring of relais

Use of well- tried principle and components

Monotoring of relais

Opener and closer have always a different mode

Measures for Input devices	DC
Cyclic test stimulus by dynamic change of the input signals	90%
Plausibility check, e.g. use of normally open and normally closed mechanicall linked contacts	99%
Cross monitoring of inputs without dynamic test	90% to 99% depending on how often a signal change is done by the application
Cross monitoring of input signals with dynamic test if short circuits are not detectable (for multiple I/O)	90%
Cross monitoring of input signals and intermediate results within the logic (L), and temporal and logical software monitor of the program flow and detection of static faults and short circuits (for multiple I/O)	99%
Indirect monitoring (e.g. monitoring by pressure switch, electrical position monitoring of actuators)	90% to 99% depending on the application
Direct monitoring (e.g. electrical position monitoring of control valves, monitoring of electromechanical devices by mechanically linked contact elements)	99%
Fault detection by the process	0 % to 99% depending on the application. This measure alone is no sufficient if the required performance level is "e"
Monitoring some characteristics of the sensor (response time, range of analogue signals) e.g. electrical resistance, capacitance	60%

The ratio of the test rate (r_t) to the request rate of the safety function (r_d) limits the effectively achievable DC:

$r_t/r_d = 1$	The maximum DC achievable by the process is limited to 60%.
$r_t/r_d = 10$	The maximum DC achievable by the process is limited to 90%.
$r_{t}/r_{d} = 100$	The maximum DC achievable by the process is limited to 99%.

Functional safety ISO 13849-1, Dipl.-Ing. Klaus-Dieter Becker

 $MTTF_{DN}$

DCavg In PL is only the average value of DC_{avg} taken in account, weightes and evaluated over all the tests. **Factor for weighting is MTTF**_d of the tested part: $\frac{DC_1}{MTTF_{D1}} + \frac{DC_2}{MTTF_{D2}} + \dots + \frac{DC_N}{MTTF_L}$ $\frac{1}{MTTF_{D1}} + \frac{1}{MTTF_{D2}} + \dots +$

For non-tested parts is DC = 0.

To summerise, all parts without failures-exclusion must be taken in to account. (failures-exclusion => $MTTF_{D} = \infty$).

Steps to performance level

- 1. Specification of the safety functions
- 2. Determination of the required PL (PL_r)
- 3. Category selection for each Subsystem
- 4. Modeling the safety-related block diagram
- 5. Determination of reliability at component & structure level
- 6. Determination of the diagnostic coverage DC
- 7. Consideration of the CCF
- 8. Determination of PL (table in Appendix K
- 9. Verification whether the achieved $PL \ge PLr$
- **10.** Implementation of software requirements according to EN ISO 13849-1 paragraph 7
- 11. Measures to avoid systematic faults
- 12. Validation

Functional safety ISO 13849-1, Dipl.-Ing. Klaus-Dieter Becker

Functional safety ISO 13849-1, Dipl.-Ing. Klaus-Dieter Becker

Separation & segregation

- Proper design of cable trays, piping ways, wiring ducts
- Apply ISO 3313 for hydraulik equipment
- Apply IEC 60204-1 for electrical equipment
- Seperate power cables from signaling cables
- Apply mechanical shielding to piping
- Avoid kinking of hoses
- Use accessories offered by installation material providers

17.10.2028

Risk assessment of safely related in accordance of EN ISO 13849-1:2023:

The following properties are determined:

- Design of an logical diagram (Designated Architecture)
- Mean time to dangerous failure MTTF_D,
- Diagnostic Coverage (DC),

failures of different items, resulting from a single event, where these failures are not consequences of each other
(CCF): As a last Step the Performance Level PL ("actual-Value") for each Safety function has to be determinded.

Steps to performance level

- 1. Specification of the safety functions
- 2. Determination of the required PL (PL_r)
- 3. Category selection for each Subsystem
- 4. Modeling the safety-related block diagram
- 5. Determination of reliability at component & structure level
- 6. Determination of the diagnostic coverage DC
- 7. Consideration of the CCF
- 8. Determination of PL (table in Appendix K
- 9. Verification whether the achieved $PL \ge PLr$
- **10.** Implementation of software requirements according to EN ISO 13849-1 paragraph 7
- 11. Measures to avoid systematic faults
- 12. Validation

8. Determination of PL

MTTF _D	MTTF _D [a]	Cat.B DC _{avg} = no	Cat.1 DC _{avg} = no	Cat.2 DC _{avg} = low	Cat.2 DC _{avg} = low	Cat.3 DC _{avg} = low	Cat.3 DC _{avg} = low
medium	12	9,51 10 ⁻⁶ b		5,84 10 ⁻⁶ b	4,04 10 ⁻⁶ b	2,49 10 ⁻⁷ c	1,04 10 ⁻⁶ c
	13	8,78 10 ⁻⁶ b		5,33 10⁻6 b	3,64 10⁻⁵ b	2,23 10 ⁻⁷ c	9,21 10 ⁻⁷ d
	15	7,61 10⁻⁵ b		4,53 10 ⁻⁷ b	3,01 10⁻⁵ b	1,82 10 ⁻⁷ c	7,44 10 ⁻⁷ d
	16	7,13 10 ⁻⁶ b		4,21 10 ⁻⁷ b	2,77 10 ⁻⁶ b	1,67 10 ⁻⁷ с	6,76 10 ⁻⁷ d
	18	6,34 10 ⁻⁶ b		3,68 10⁻6 b	2,37 10 ⁻⁶ c	1,41 10 ^{.7} c	5,67 10 ⁻⁷ d
	20	5,71 10 ⁻⁶ b		3,26 10⁻ ⁶ c	2,06 10⁻ ⁶ c	1,22 10 ⁻⁷ с	4,85 10 ⁻⁷ d
	22	5,19 10 ⁻⁶ b		2,93 10 ⁻⁶ c	1,82 10 ⁻⁶ с	1, 07 10 ⁻⁷ с	4,21 10 ⁻⁷ d
	24	4,76 10 ⁻⁶ b		2,65 10⁻ ⁶ c	1,62 10 ⁻⁶ c	9,47 10 ^{.7} d	3,70 10 ⁻⁷ d
	27	4,23 10 ⁻⁶ b		2,32 10⁻⁵ c	1,39 10⁻ ⁶ c	8,04 10 ⁻⁷ d	3,10 10 ⁻⁷ d
high	30		3,80 10⁻⁰ b	2,06 10⁻ ⁶ c	1,21 10 ⁻⁶ c	6,94 10 ^{.7} d	2,65 10 ⁻⁷ d
	33		3,46 10⁻ ⁶ b	1,85 10⁻ ⁶ c	1,06 10 ⁻⁶ c	5,94 10 ⁻⁷ d	2,30 10 ⁻⁷ d
	36		3,17 10⁻⁰ b	1,67 10⁻⁵ c	9,39 10 ⁻⁷ d	5,16 10 ⁻⁷ d	2,01 10 ⁻⁷ d
	39		2,93 10⁻ ⁶ c	1,53 10⁻ ⁶ c	8,40 10 ⁻⁷ d	4,53 10 ⁻⁷ d	1,78 10 ⁻⁷ d
	43		2,65 10⁻ ⁶ c	1,37 10⁻⁵ c	7,34 10 ⁻⁷ d	3,87 10 ⁻⁷ d	1,54 10 ⁻⁷ d
	47		2,43 10⁻ ⁶ c	1,24 10 ⁻⁶ c	6,49 10 ⁻⁷ d	3,35 10 ⁻⁷ d	1,34 10 ⁻⁷ d
	51		2,24 10 ⁻⁶ c	1,13 10⁻ ⁶ c	5,80 10 ⁻⁷ d	2,93 10 ⁻⁷ d	1,19 10 ⁻⁷ d
	56		2,04 10 ⁻⁶ c	1,02 10 ⁻⁶ c	5,10 10 ⁻⁷ d	2,52 10 ⁻⁷ d	1,03 10 ⁻⁷ d
	62		1,84 10⁻ ⁶ c	9,06 10 ⁻⁷ d	4 ,43 10 ⁻⁷ d	2,13 10 ⁻⁷ d	8,84 10 ⁻⁸ e
	68		1,68 10⁻ ⁶ c	8,7 10 ^{.7} d	3,90 10 ⁻⁷ d	1,84 10 ^{.7} d	7,68 10 ⁻⁸ e
	75		1,52 10 ⁻⁶ c	7,31 10 ⁻⁷ d	3,40 10⁻ ⁷ d	1,57 10 ^{.7} d	6,62 10 ⁻⁸ e
	82		1,39 10⁻ ⁶ c	6,61 10 ⁻⁷ d	3,01 10 ⁻⁷ d	1,35 10 ^{.7} d	5,79 10 ⁻⁸ e
	91		1,25 10⁻ ⁶ c	6,88 10 ⁻⁷ d	2,61 10 ⁻⁷ d	1,14 10 ⁻⁷ d	4,94 10 ⁻⁸ e
	100		1,14 10⁻ ⁶ c	5,28 10 ⁻⁷ d	2,29 10 ⁻⁶ d	1,01 10 ⁻⁷ d	4,29 10 ⁻⁶ e

Steps to performance level

- 1. Specification of the safety functions
- 2. Determination of the required PL (PL_r)
- 3. Category selection for each Subsystem
- 4. Modeling the safety-related block diagram
- 5. Determination of reliability at component & structure level
- 6. Determination of the diagnostic coverage DC
- 7. Consideration of the CCF
- 8. Determination of PL (table in Appendix K
- 9. Verification whether the achieved $PL \ge PLr$
- **10.** Implementation of software requirements according to EN ISO 13849-1 paragraph 7
- 11. Measures to avoid systematic faults
- 12. Validation

9. Verification of PL

Functional safety ISO 13849-1, Dipl.-Ing. Klaus-Dieter Becker

Observation of Failure, Exclussion of Failure

- as an exception only
- justification in detail is necessary
- Iisted failures in EN ISO 13849-2
- for new Components the application of FMEA is necessary as an evidence for exclusion of certains failure
- consecutive failure consider as single failure
- common cause failure consider as single failure

17.10.2023

MTTF _D	MTTF _D [a]	Cat.B DC _{avg} = no	Cat.1 DC _{avg} = no	Cat.2 DC _{avg} = low	Cat.2 DC _{avg} = low	Cat.3 DC _{avg} = low	Cat.3 DC _{avg} = low
medium	12	9,51 10 ⁻⁶ b		5,84 10⁻⁰ b	4,04 10 ⁻⁶ b	2,49 10 ⁻⁷ c	1,04 10 ⁻⁶ c
	13	8,78 10⁻⁵ b		5,33 10⁻ ⁶ b	3,64 10⁻ ⁶ b	2,23 10 ⁻⁷ c	9,21 10 ⁻⁷ d
	15	7,61 10⁻ ⁶ b		4,53 10 ⁻⁷ b	3,01 10⁻ ⁶ b	1,82 10 ⁻⁷ с	7,44 10 ⁻⁷ d
	16	7,13 10 ⁻⁶ b		4,21 10 ⁻⁷ b	2,77 10⁻ ⁶ b	1,67 10 ⁻⁷ с	6,76 10 ⁻⁷ d
	18	6,34 10⁻ ⁶ b		3,68 10⁻ ⁶ b	2,37 10⁻ ⁶ c	1,41 10 ⁻⁷ c	5,67 10 ⁻⁷ d
	20	5,71 10⁻⁵ b		3,26 10⁻ ⁶ c	2,06 10⁻ ⁶ c	1,22 10 ⁻⁷ с	4,85 10 ⁻⁷ d
	22	5,19 10⁻6 b		2,93 10 ⁻⁶ c	1,82 10⁻ ⁶ c	1, 07 10 ⁻⁷ с	4,21 10 ⁻⁷ d
	24	4,76 10 ⁻⁶ b		2,65 10-6	1,62 10 ⁻⁶ c	9,47 10 ⁻⁷ d	3,70 10 ⁻⁷ d
	27	4,23 10 ⁻⁶ b		2,32 10 ⁻⁶ c	1,39 10⁻ ⁶ c	8,04 10 ^{.7} d	3,10 10 ⁻⁷ d
high	30		3,80 10⁻⁰ b	2,06 10⁻⁵ c	1,21 10⁻ ⁶ c	6,94 10 ^{.7} d	2,65 10 ⁻⁷ d
	33		3,46 10⁻ ⁶ b	1,85 10⁻ ⁶ c	1,06 10 ⁻⁶ c	5,94 10 ⁻⁷ d	2,30 10 ⁻⁷ d
	36		3,17 10⁻6 b	1,67 10⁻ ⁶ c	9,39 10 ⁻⁷ d	5,16 10 ⁻⁷ d	2,01 10 ⁻⁷ d
	39		2,93 10⁻ ⁶ c	1,53 10⁻ ⁶ c	8,40 10 ⁻⁷ d	4,53 10 ⁻⁷ d	1,78 10 ⁻⁷ d
	43		2,65 10⁻6 c	1,37 10⁻ ⁶ c	7,34 10 ⁻⁷ d	3,87 10 ⁻⁷ d	1,54 10 ⁻⁷ d
	47		2,43 10⁻ ⁶ c	1,24 10⁻ ⁶ c	6,49 10 ⁻⁷ d	3,35 10 ⁻⁷ d	1,34 10 ⁻⁷ d
	51		2,24 10 ⁻⁶ c	1,13 10⁻⁵ c	5,80 10 ⁻⁷ d	2,93 10 ⁻⁷ d	1,19 10 ⁻⁷ d
	56		2,04 10 ⁻⁶ c	1,02 10 ⁻⁶ c	5,10 10 ⁻⁷ d	2,52 10 ⁻⁷ d	1,03 10 ⁻⁷ d
	62		1,84 10⁻ ⁶ c	9,06 10 ⁻⁷ d	4 ,43 10 ⁻⁷ d	2,13 10 ⁻⁷ d	8,84 10 ⁻⁸ e
	68		1,68 10⁻ ⁶ c	8,7 10 ^{.7} d	3,90 10 ⁻⁷ d	1,84 10 ⁻⁷ d	7,68 10 ⁻⁸ e
	75		1,52 10⁻ ⁶ c	7,31 10 ⁻⁷ d	3,40 10 ⁻⁷ d	1,57 10 ⁻⁷ d	6,62 10⁻ ⁸ e
	82		1,39 10⁻ ⁶ c	6,61 10 ⁻⁷ d	3,01 10 ⁻⁷ d	1,35 10 ⁻⁷ d	5,79 10⁻ ⁸ e
	91		1,25 10⁻ ⁶ c	6,88 10 ⁻⁷ d	2,61 10 ⁻⁷ d	1,14 10 ⁻⁷ d	4,94 10 ⁻⁸ e
	100		1,14 10⁻ ⁶ c	5,28 10 ⁻⁷ d	2,29 10⁻⁵ d	1,01 10 ⁻⁷ d	4,29 10⁻ ⁶ e

Steps to performance level

- 1. Specification of the safety functions
- 2. Determination of the required PL (PL_r)
- 3. Category selection for each Subsystem
- 4. Modeling the safety-related block diagram
- 5. Determination of reliability at component & structure level
- 6. Determination of the diagnostic coverage DC
- 7. Consideration of the CCF
- 8. Determination of PL (table in Appendix K
- 9. Verification whether the achieved $PL \ge PLr$
- 10. Implementation of software requirements according to EN ISO 13849-1 paragraph 7
- 11. Measures to avoid systematic faults
- 12. Validation

10. Software

PL a, b:

basic

PL a, b:

basic

Functional safety ISO 13849-1, Dipl.-Ing. Klaus-Dieter Becker

Schritt 10: Softwareanforderungen

EN ISO 13849-1:2023

Prinziples of SW-requirements

- For PL a to PL e and Embedded SW as well as Application SW
- Based of generell akzepted SW-design methods
- ... as prevention of faults and defensive coding
- Taken to account, that faults will be done during the specification and the design
- The Prinziples of SW-Standard 61508-3 take as a basis...
- ... but not too much sophisticated
- As far as possible without refernces to 61508-3
- understandable, applicable und usable

Steps to performance level

- 1. Specification of the safety functions
- 2. Determination of the required PL (PL_r)
- 3. Category selection for each Subsystem
- 4. Modeling the safety-related block diagram
- 5. Determination of reliability at component & structure level
- 6. Determination of the diagnostic coverage DC
- 7. Consideration of the CCF
- 8. Determination of PL (table in Appendix K
- 9. Verification whether the achieved $PL \ge PLr$
- 10. Implementation of software requirements according to EN ISO 13849-1 paragraph 7
- 11. Measures to avoid systematic faults
- 12. Validation

12. Valdation of PL

The proof that each safety-related part of the control system and each of its executed safety functions comply with the requirements of EN ISO 13849-1 shall begin as early as possible during the development, in order to detect and eliminate faults in time.

Operating instruction

The manufacturer has the duty to inform the user about:

- Limits of SRP/CS and excluded failure
- precisely description of interfaces to SRP/CS
- Restriction of operability (incl. ambient conditions)
- Reaction time, optical and acoustic signalling devices
- Muting and cancellation (override) of safety function by hand
- Type of control system
- maintenance, check-lists

Technical File

The Designer (Developer) has to document:

- Safety function (SF) and their characteristic
- precise beginning and end of the SF
- permissible field conditions
- Performance Level PL, decidede category
- reliability-parameter (MTTF_D, DC, CCF, operation time)
- Measures against systematic failure
- Observation of failure, justification for all excluded failure

Safety related parts of control systems (machines))

Independent of the technology

- electro mechanic
- electronic
- Programmable electronic
- Hydraulic
- Pneumatic
- Mechanic

Conclusion: EN ISO 13849 ...

- **1.** Determination of the required Performance Levels
- 2. design of the safety related block diagram
- 3. Determination of Category for each subsystems
- **4.** Calculating or evaluating MTTF_D values for single components
- 5. Determination of the diagnostic coverage
- 6. Considering of CCF
- 7. determSpecification of each safety function
- 8. ination of PL (Table in Annex K)
- 9. Verification if PL>=PL_r
- **10.** Software requirements according to EN ISO 13849-1 para 4.6
- **11.** considering of the prevention of systematic failures
- **12.** Validation

"Everything which is merely possible, is possibly wrong." *René Descartes (1596 – 1650*

"The first rule a mathematician has to follow is to be exact. The second rule is to be clear and precise and as far as possible simple." *Lazare Nicolas Marguerite Carnot (1753 – 1823)*

"There are things which seem to be unbelievable to those who have not studied mathematics." *Archimedes (ca. 285 – 212 v. Chr.)*

Thank you very much for your attention !

Wish you much success in integration of safety in design and marketing of machines in European Union

