# SAFEGUARDING & COMPLEMENTARY PROTECTIVE MEASURES



Otto Görnemann SICK AG / R&D 2022-05-24

## RISK REDUCTION ISO 12100:2010





## SAFEGUARDING AGAINST HAZARDS SEPARATE PERSONS FROM DANGER BY MEANS OF SPACE OR TIME





#### PULLBACK MECHANISM DEFLECTING MEASURE





## POSITION FIXING PROTECTIVE DEVICES PROTECTION OF A SINGLE PERSON





## PROTECTIVE DEVICES TYPICAL EXAMPLES





#### Interlocking of movable guards

- Doors
- Gates
- Traps
- Barriers
- ...



#### **Electro-sensitive protective equipment**

- Light curtains
- Through beam photo-cells
- Laser scanners
- Vision based protective equipment
- ...



- SPE may be useable where frequent access is required
- SPE can **not** be used for protection against ...
  - parts being ejected from the machine
  - substances being ejected like coolant, cutting oil etc.
  - noise, radiation
  - ► fumes, hazardous substances
  - hazards with unsuitable stopping times



## COMBINATION OF DIFFERENT GUARDS ... ... OR OF GUARDS WITH OTHER DEVICES



#### Key

- 1 Active opto-electronic protective device (AOPD)
- 2 Interlocking guard
- 3 Electrical cabinet
- 4 Internal fence allowing only zoned access
- 5 Pressure sensitive mat
- 6 Two-hand control device
- 7 Reset device
- 8 Distance guard







## FIXED (PHYSICAL) GUARDS REQUIREMENTS FOR GUARDS





- General requirements for the design, construction and selection of fixed and movable guards
   ISO 14120:2013
- Safety distances to prevent hazard zones being reached by upper and lower limbs ISO 13857:2018
- a height of the hazard zone
- b height of the guard
- C horizontal distance

## DISTANCING GUARDS REACHING OVER/THROUGH/UNDER PROTECTIVE STRUCTURES





## REACHING OVER GUARDS TABLE 2 (HIGH RISK), ISO 13857



#### High risk:



height requirements for guards

| of the hazardou | Horizontal distance c to the hazardous zone |       |       |       |       |       |       |       |       |       |
|-----------------|---------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 2.700           | 0                                           | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 2.600           | 900                                         | 800   | 700   | 600   | 600   | 500   | 400   | 300   | 100   | 0     |
| 2.400           | 1.100                                       | 1.000 | 900   | 800   | 700   | 600   | 400   | 300   | 100   | 0     |
| 2.200           | 1.300                                       | 1.200 | 1.000 | 900   | 800   | 600   | 400   | 300   | 0     | 0     |
| 2.000           | 1.400                                       | 1.300 | 1.100 | 900   | 800   | 600   | 400   | 0     | 0     | 0     |
| 1.800           | 1.500                                       | 1.400 | 1.100 | 900   | 800   | 600   | 0     | 0     | 0     | 0     |
| 1.600           | 1.500                                       | 1.400 | 1.100 | 900   | 800   | 500   | 0     | 0     | 0     | 0     |
| 1.400           | 1.500                                       | 1.400 | 1.100 | 900   | 800   | 0     | 0     | 0     | 0     | 0     |
| 1.200           | 1.500                                       | 1.400 | 1.100 | 900   | 700   | 0     | 0     | 0     | 0     | 0     |
| 1.000           | 1.500                                       | 1.400 | 1.000 | 800   | 0     | 0     | 0     | 0     | 0     | 0     |
| 800             | 1.500                                       | 1.300 | 900   | 600   | 0     | 0     | 0     | 0     | 0     | 0     |
| 600             | 1.400                                       | 1.300 | 800   | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 400             | 1.400                                       | 1.200 | 400   | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 200             | 1.200                                       | 900   | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 0               | 1.100                                       | 500   | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Distances       | Hight b of the guard                        |       |       |       |       |       |       |       |       |       |
| in mm           | 1.000                                       | 1.200 | 1.400 | 1.600 | 1.800 | 2.000 | 2.200 | 2.400 | 2.500 | 2.700 |



|                | a<br>h<br>l    | h        |                |
|----------------|----------------|----------|----------------|
| h ≤ 200        | l ≥ 340        | I ≥ 665  | I ≥ 290        |
| 200 < h ≤ 400  | l ≥ 550        | l ≥ 765  | l ≥ 615        |
| 400 < h ≤ 600  | l <u>≥</u> 850 | I ≥ 950  | I <u>≥</u> 800 |
| 600 < h ≤ 800  | l <u>≥</u> 950 | l ≥ 950  | I ≥ 900        |
| 800 < h ≤ 1000 | l ≥ 1125       | l ≥ 1195 | I ≥ 1015       |

**NOTE**: Slot openings with *h* > 180mm will allow access for the whole body



| Part of the body   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | One place of the part |       | Calab: distance (mm) |        |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------|----------------------|--------|--|
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | opening e (mm)        |       | Salety distance (mm) |        |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Slot  | Square               | Circle |  |
| PT- Do atto        | The second secon | e ≤ 4                 | ≥ 2   | ≥2                   | ≥ 2    |  |
| Fingertip          | 377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 < e ≤ 6             | ≥ 10  | 2.5                  | ≥ 5    |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 < e ≤ 8             | ≥ 20  | ≥ 15                 | ≥ 5    |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 < e ≤ 10            | ≥ 80  | ≥ 25                 | ≥ 20   |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 < e ≤ 12           | ≥ 100 | ≥ 80                 | ≥ 80   |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12 ≤ e ≤ 20           | ≥ 120 | ≥ 120                | ≥ 120  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 < e ≤ 30           | ≥ 850 | ≥ 120                | ≥ 120  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 < e ≤ 40           | ≥ 850 | ≥ 200                | ≥ 120  |  |
| Arm up to shoulder | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40 < e ≤ 120          | ≥ 850 | ≥ 850                | ≥ 850  |  |

#### e.g., Mesh, aperture 20 x 20 mm:





## INTERLOCKING OF GUARDS ISO 14119:2013





## POSITION SWITCHES TERMS AND DEFINITIONS





#### **Direct mechanical action**

movement of a mechanical component that arises inevitably from the movement of another mechanical component either by direct contact or via rigid elements (ISO 14119:2013 – Definition 3.10)



IEC 60947-5-1 Annex K

#### **Direct opening action**

achievement of contact separation as a direct result of a specified movement of the switch actuator through non-resilient members (for example not dependent upon springs) (ISO 14119:2013 – Definition 3.10 ~ IEC 60947-5-1:2003, K 2.2.)

#### MINIMIZE DEFEAT POSSIBILITIES PHYSICAL OBSTRUCTION OR SHIELDING







## **POSITION SWITCHES MECHANICAL ATTACHMENT**





been matched to the position switch.

#### DETECTION OF MECHANICAL FAULTS PREVENTION OF COMMON CAUSE FAILURES





## INTERLOCKING DEVICES OPERATING PRINCIPLES



| Designation | Actuation         |                                      |           | Actuator                           | SICK product        |      |
|-------------|-------------------|--------------------------------------|-----------|------------------------------------|---------------------|------|
|             | Principle         | Example                              | Principle | Examples                           | Exan                | nple |
| Type 1      | Mechanical        | Physical contact,<br>force, pressure | Not coded | Switching cam                      | i10P                | Ô    |
|             |                   |                                      |           | Turning lever                      | i10R                | Ć    |
|             |                   |                                      |           | Hinge                              | i10H                | 1    |
| Type 2      |                   |                                      | Coded     | Shaped actuator<br>(switching rod) | i16S                | -    |
|             |                   |                                      |           | Кеу                                | -                   |      |
|             | Electro-sensitive | Inductive                            | Not coded | Suitable ferromagnetic materials   | IN4000              | Ý    |
|             |                   | Magnetic                             |           | Magnets, electromagnets            | MM12 1)             | 1    |
| Туре З      |                   | Capacitive                           |           | All suitable materials             | CM18 <sup>1)</sup>  | 60   |
| Туре 4      |                   | Ultrasonic                           |           | All suitable materials             | UM12 <sup>1)</sup>  | No.  |
|             |                   | Optical                              |           | All suitable materials             | WT 12 <sup>1)</sup> | J    |
|             |                   | Magnetic                             |           | Coded magnet                       | RE11                | 12 % |
|             |                   | RFID                                 | Coded     | Coded RFID transponder             | TR4 Direct          |      |
|             |                   | Optical                              |           | Coded optical actuator             | 12                  |      |











- 1 Position switch
- 2 Assured switch-on distance S<sub>ao</sub>
- 3 Rated sensing range  $S_n$  (switch-on distance under laboratory conditions)
- 4 Assured switch off distance Sar
- 5 Actuating element

## SERIAL CONNECTION OF POTENTIAL FREE CONTACTS PART 1 / 2





#### **Normal Status**

Machine operation

#### **Fault Occurrence**

Cable damage leads to short circuit with 24 VDC and the loss of one channel

#### Activation

Activating the interlock leads to the switching off of the safety relay

#### Lockout

Signal change detected only on one input. Safety relay goes into lockout

## SERIAL CONNECTION OF POTENTIAL FREE CONTACTS PART 2 / 2





#### Service problem

The machine cannot be started due to the locked status of the safety device

#### Troubleshooting

During fault searching the operator opens other doors

#### **Operator action**

After closing the door the fault can be reset at the interface (input requirements are satisfied)

#### Danger

Although a channel is faulty, the safety relay allows a reset! A second failure in the cable (now very likely) leads to the loss of the safety function



| Number of frequently<br>used movable guards <sup>a)</sup><br><sup>b)</sup>                                                                                                                                                                                                                  |                                                                                                       | Number of additional<br>movable guards <sup>c)</sup> | Maximum achievable DC <sup>d)</sup> |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------|--|--|--|--|
| 0                                                                                                                                                                                                                                                                                           | +                                                                                                     | 2 to 4                                               | Medium                              |  |  |  |  |
|                                                                                                                                                                                                                                                                                             |                                                                                                       | 5 to 30                                              | Low                                 |  |  |  |  |
|                                                                                                                                                                                                                                                                                             |                                                                                                       | > 30                                                 | None                                |  |  |  |  |
| 1                                                                                                                                                                                                                                                                                           | +                                                                                                     | 1                                                    | Medium                              |  |  |  |  |
|                                                                                                                                                                                                                                                                                             |                                                                                                       | 2 to 4                                               | Low                                 |  |  |  |  |
|                                                                                                                                                                                                                                                                                             |                                                                                                       | <u>&gt;</u> 5                                        | None                                |  |  |  |  |
| >1                                                                                                                                                                                                                                                                                          | +                                                                                                     | <u>&gt;</u> 0                                        | None                                |  |  |  |  |
| a) If the frequency is higher than once per hour.                                                                                                                                                                                                                                           |                                                                                                       |                                                      |                                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                             |                                                                                                       |                                                      |                                     |  |  |  |  |
| b) If the number of operate                                                                                                                                                                                                                                                                 | <ul> <li>b) If the number of operators capable of opening separate guards exceeds one then</li> </ul> |                                                      |                                     |  |  |  |  |
| the number frequently u                                                                                                                                                                                                                                                                     | used i                                                                                                | moveable guards shall b                              | e increased by one.                 |  |  |  |  |
|                                                                                                                                                                                                                                                                                             |                                                                                                       |                                                      |                                     |  |  |  |  |
| <ul> <li>c) The number of additional movable guards my be reduced by one if one of the following conditions are met:</li> <li>When the m inimum distance between any of the guards is more than 5 m or</li> <li>When none of the additional movable guards is directly reachable</li> </ul> |                                                                                                       |                                                      |                                     |  |  |  |  |

d) In any case, if it is foreseeable that fault masking will occur (e.g., multiple movable guards will be open at the same time as part of normal operation or srevice), then the DC is limited to none.

#### POSITIONING OF SAFEGUARDS ISO 13855:2010





### INTERLOCKING DEVICES ISO 14119:2013





#### **Guard interlocking**

- Initiation of machine functions shall not be possible as long the guard is not closed (or in place)
- a stop command is given if the guard is opened while hazardous machine functions are operating



#### Guard interlocking with guard locking

- Initiation of machine functions shall not be possible as long the guard is not closed (or in place) & locked
- the guard remains closed and locked until the risk due to the hazardous machine functions "covered" by the guard has disappeared



# GUARD INTERLOCKING WITH GUARD LOCKING ISO 14119:2013

## INTERLOCKING GUARD WITH GUARD LOCKING DOOR CLOSED AND LOCKED





## INTERLOCKING GUARD WITH GUARD LOCKING DOOR CLOSED AND UNLOCKED





## INTERLOCKING GUARD WITH GUARD LOCKING DOOR OPEN AND UNLOCKED







| Direction | of force                                                          | Position Application of for                              |                                  | Force (N) |
|-----------|-------------------------------------------------------------------|----------------------------------------------------------|----------------------------------|-----------|
|           | Horizontal, parallel to<br>body symmetry plane,<br>backward, pull | Standing upright, feet<br>parallel or in step<br>posture | Bi-manual, vertical grips        | 1100      |
|           | Horizontal, normal to<br>body symmetry plane                      | Standing, feet parallel                                  | Single-handed,<br>vertical grips | 700       |



| 1. | Define the function | Covering / Distancing                                                                                                                 | (ISO 14120)                                   |
|----|---------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 2. | Select type         | Fixed or removable/movable                                                                                                            | (ISO 12100)                                   |
| 3. | Select              | Proper materials & Construction design considering required retention capabilities                                                    | (ISO 14120)                                   |
| 4. | Select interlocking | without / with interlocking<br>considering systematic aspects of related co                                                           | (ISO 12100)<br>omponents                      |
| 5. | Select              | without / with guard locking                                                                                                          | (ISO 13855)                                   |
| 6. | Determine           | Dimensions & safety distance considering<br>openings (e.g. mash width) height of hazard<br>heights of lower / upper edge of the guard | (ISO 13857)<br>I zone and                     |
|    | or                  | Minimum distance<br>considering openings (e.g. mash width) heig<br>zone, heights of lower / upper edge, overall s                     | (ISO 13855)<br>ght of hazard<br>stopping time |





# ELECTRO SENSITIVE PROTECTIVE EQUIPMENT ESPE

## ELECTRO-SENSITIVE PROTECTIVE EQUIPMENT AOPD, AOPDDR, VBPD, ...




#### WHAT SHOULD ESPE DETECT SAFEGUARDING TYPE & DETECTION CAPABILITY





#### **Point-of-operation protection**

Finger or hand detection



#### Hazardous area protection

Detection of the presence of a person in the hazardous area



#### Access protection (perimeter guarding)

 Detection of a person on access to the hazardous area

#### POSITIONING OF AOPD MOUNTING





### **DETECTION CAPABILITY** ACC. TO EFFECTIVE BEAM SECTION (ONLY FOR PARALLEL BEAMS)





Object detection
 Undefined object detection
 Reliable object detection

test piece covers one beam section completely test piece covers only parts of the beam sections test piece covers two beam sections completely

May 2022



[mm]



# S = K x T + 8 x (d-14mm)

- S = Minimum / Safety distance
- K = Approach speed [2000 mm/s] for S  $\leq$  500mm
- K = Approach speed [1600 mm/s] for S > 500mm
- T = Response / stopping time [s]
- C = Additional distance [8 x (d-14mm)]
- d = Detection capability [mm]
- S always ≥ 100mm
- The formula is only valid for d ≤ 40mm & adults !
- Formula applies for any approach directions orthogonal to the detection plane [ß > 30°]

#### POSITIONING OF SAFEGUARDS ISO 13855:2010





CRT = Resolution

#### ISO 13855 – MINIMUM DISTANCES POINT OF OPERATION SAFEGUARDING – INTRUSION COEFFICIENT "C"



why C = 8 x (d-14mm) ... ?



#### ISO 13855 – MINIMUM DISTANCES PERIMETER SAFEGUARDING – ACCESS PROTECTION





# S = K x T + C

- S = Minimum / Safety distance [mm]
- K = Approach speed [1600 mm/s]
- T = Response / stopping time [s]
- C = Additional distance = 850 mm if reaching over the ESPE is not possible
- C = Additional distance see Table 1 if reaching over the ESPE is possible
- C not less than 850 mm (length of the human arm)
- The formula is valid for devices with d > 40mm !
- Formula applies for any approach directions orthogonal to the detection plane [ß > 30°]



**C** distance that a part of the body (usually a hand) can move past the safeguard towards the hazard zone prior to actuation of the safeguard





If it is possible to access hazardous areas by reaching over the ESPE, then the height "b" of the top edge of the detection field shall be selected according to the table so that :

 $\mathbf{C} \geq \mathbf{C}_{\mathsf{RO}} \geq \mathbf{C}_{\mathsf{RT}}$ 

 $C_{RO}$  = Intrusion factor due to reaching over the detection field,  $C_{RT}$  = Intrusion factor due to reaching through the detection field

| Height a of the hazard zone (mm) | Additional horizontal distance C to the hazard zone (mm) © SICK |      |      |      |      |      |      |      |                                   |      |      |            |  |
|----------------------------------|-----------------------------------------------------------------|------|------|------|------|------|------|------|-----------------------------------|------|------|------------|--|
| 2600                             | 0                                                               | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0                                 | 0    | 0    | 0          |  |
| 2500                             | 400                                                             | 400  | 350  | 300  | 300  | 300  | 300  | 300  | 250                               | 150  | 100  | 0          |  |
| 2400                             | 550                                                             | 550  | 550  | 500  | 450  | 450  | 400  | 400  | 300                               | 250  | 100  | 0          |  |
| 2200                             | 800                                                             | 750  | 750  | 700  | 650  | 650  | 600  | 550  | 400                               | 250  | 0    | 0          |  |
| 2000                             | 950                                                             | 950  | 850  | 850  | 800  | 750  | 700  | 550  | 400                               | 0    | 0    | 0          |  |
| 1800                             | 1100                                                            | 1100 | 950  | 950  | 850  | 800  | 750  | 550  | 0                                 | 0    | 0    | 0          |  |
| 1600                             | 1150                                                            | 1150 | 1100 | 1000 | 900  | 850  | 750  | 450  | S<br>C <sub>R0</sub> K×T<br>Hazar |      |      | azard zone |  |
| 1400                             | 1200                                                            | 1200 | 1100 | 1000 | 900  | 850  | 650  | 0    |                                   |      |      |            |  |
| 1200                             | 1200                                                            | 1200 | 1100 | 1000 | 850  | 800  | 0    | 0    | (                                 |      |      |            |  |
| 1000                             | 1200                                                            | 1150 | 1050 | 950  | 750  | 700  | 0    | 0    |                                   |      |      |            |  |
| 800                              | 1150                                                            | 1050 | 950  | 800  | 500  | 450  | 0    | 0    |                                   |      |      |            |  |
| 600                              | 1050                                                            | 950  | 750  | 550  | 0    | 0    | 0    | 0    |                                   |      |      |            |  |
| 400                              | 900                                                             | 700  | 0    | 0    | 0    | 0    | 0    | 0    |                                   |      |      |            |  |
| 200                              | 600                                                             | 0    | 0    | 0    | 0    | 0    | 0    | 0    |                                   |      |      |            |  |
| 0                                | 0                                                               | 0    | 0    | 0    | 0    | 0    | 0    | 0    |                                   |      |      |            |  |
|                                  | Height <b>b</b> of the top edge of the protective field (mm)    |      |      |      |      |      |      |      |                                   |      |      |            |  |
|                                  | 900                                                             | 1000 | 1100 | 1200 | 1300 | 1400 | 1600 | 1800 | 2000                              | 2200 | 2400 | 2600       |  |

#### ISO 13855 – MINIMUM DISTANCES HAZARDOUS AREA PROTECTION





## S = K x T + (1200- 0,4 x H)

- S = Minimum / Safety distance [mm]
- K = Approach speed [1600 mm/s]
- T = Response / stopping time [s]
- C = Additional distance [1200mm 0,4H]
- H = Height of the edge of the detection zone
  furthest to the hazard zone but not less than 0
  and not higher then 1000 mm
- d Detection capability  $[d \le (H/15) + 50mm]$
- C not less than 850 mm (length of the human arm)
- The formula is only valid for devices with d ≤ 117mm !
- The formula applies for any approach directions parallel to the detection plane  $[\beta \le 30^\circ]$

#### MAIN DIFFERENCE OF TYPE 2/4 ACC. TO IEC 61496-1:2013



|                                                                                       | Туре 2                                                                                                    | Туре 4                                                            |  |  |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|
| Functional safety                                                                     | Between the test intervals, the protective<br>function may be lost during the occurrence<br>of a failure. | The protective function is retained even during several failures. |  |  |
| EMC (electromagnetic compatibility)                                                   | Basic requirements                                                                                        | Increased requirements                                            |  |  |
| Maximum field of view<br>of the optics                                                | 10°                                                                                                       | 5°                                                                |  |  |
| Minimum distance <b>a</b> to reflective<br>surfaces over a distance of <b>D</b> < 3 m | 262 mm<br>Reflecti<br>Field of view Minimum distance a                                                    | 131 mm<br>ve surface                                              |  |  |
| Minimum distance <b>a</b> to reflective<br>surfaces over a distance of <b>D</b> > 3 m | = distance x tan $(10^{\circ} / 2)$                                                                       | sender-receiver<br>= distance x tan (5° / 2)                      |  |  |
| Several senders of the same design in a system                                        | No special requirements<br>(Beam coding is recommended)                                                   | No effect; however, if affected, OSSDs switch off.                |  |  |





#### SAFETY LASER SCANNER (AOPDDR) OPTICAL SCHEME





#### SAFETY LASER SCANNER (AOPDDR) FUNCTIONAL PRINCIPLE – TIME OF FLIGHT MEASUREMENT





#### SAFETY LASER SCANNER (AOPDDR) PROTECTIVE/WARNING FIELDS





#### VERTICAL OPERATION CONTOUR AS REFERENCE





Floor, frame or similar

#### SAFETY LASER SCANNER (AOPDDR) DETECTION CAPABILITY AND RELATION TO OBJECT REFLECTANCE





100% reference based on Kodak white material

#### SYSTEMATIC ASPECTS – LOSS OF EFFECTIVENESS BEAM DEFLECTION DUE TO NEAR REFLECTIVE SURFACES



- Reflective surfaces present within the transmitting / receiving beam path, or deposited or attached there, can cause reflections and thus lead to a hindrance not being detected.
- For this reason a minimum distance "a" must be maintained between reflective objects and the optical axis (the straight-line between sender and receiver).
- The distance "a" depends on the distance between sender and receiver and the effective aperture angle α
- The effective aperture angle α = ± 2,5° for Type 4 devices and α = ± 5° for Type 2 devices







#### SYSTEMATIC ASPECTS – LOSS OF EFFECTIVENESS MUTUAL INTERFERENCES





#### ALLOWING MATERIAL PASSAGE SUITABLE SOLUTIONS











#### MUTING FUNCTION REQUIREMENTS





- During muting, a safe state must be ensured by other means, therefore it shall not be possible to access the hazard zone
- Muting shall be automatic, i.e. not manual
- Muting shall not be dependent on a single electrical signal
- Muting shall not be entirely dependent on software signals
- An invalid combination or sequence of muting signals shall not allow any muting state, and it shall be ensured that the protective function is retained
- The muting status shall end immediately after the material has passed through

#### POSITIONING OF MUTING SENSORS APPLICATION EXAMPLE WITH FOUR THROUGH BEAM PHOTO CELLS









#### POSITIONING OF THE MUTING SENSORS APPLICATION EXAMPLE WITH TWO REFLEX PHOTO CELLS





 $d5 \le 200 \text{ mm} \& \text{ if possible} \sim 0 \text{mm}$ 

#### ADDITIONAL SWINGING DOORS PREVENTION OF CRUSHING OR SHEARING RISKS







| Fixed b                                                                                             | lanking                                                                                                                                | Floating blanking                                                                                                                    |                                                                                                                                     |  |  |  |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Fixed blanking                                                                                      | Fixed blanking<br>with increased size<br>tolerance                                                                                     | Floating blanking<br>with complete object<br>monitoring                                                                              | Floating blanking<br>with partial object<br>monitoring                                                                              |  |  |  |
| An object of <i>fixed</i><br>size <i>must</i> be at a<br>specific point in the<br>protective field. | From the operator<br>side, an object of <i>lim-<br/>ited</i> size <i>is allowed</i><br><i>to</i> move through the<br>protective field. | An object of fixed<br>size <i>must</i> be within<br>a specific area of the<br>protective field. The<br>object is allowed to<br>move. | An object of fixed<br>size <i>is allowed</i> in a<br>specific area in the<br>protective field. The<br>object is allowed to<br>move. |  |  |  |
|                                                                                                     |                                                                                                                                        |                                                                                                                                      |                                                                                                                                     |  |  |  |

#### FLOATING BLANKING APPLICATION







[H ≤ 1.500 mm]

O. Görnemann & R. Schumacher | IVSS Detroit | © SICK AG

#### OBJECT PATTERN RECOGNITION SELF-TEACH DYNAMIC BLANKING





#### VERTICAL SAFEGUARDING MUTING ALTERNATIVE











The detection of children with body weights less than 20 kg is not addressed in the product standards

for pressure-sensitive mats and floors





- Note: SX stands for
- SM = Safety Mat
- SL = Safety Edge
- SB = Safety Bumper

#### 2-wire-technology



MAYSER®





Contact open



#### POSITIONING OF PRESSURE-SENSITIVE MATS IF NO TYPE-C STANDARD EXISTS





 $S = K \times T + (1.200 \text{ mm} - 0.4 \cdot \text{h})$ S > 750 mm where K = 1.600 mm/s The following basic principles apply:

- It shall be ensured that both hands are used
- Releasing one of the two control actuating devices shall stop the dangerous movement
- Inadvertent actuation shall be prevented
- It shall not be possible to easily defeat the device
- It shall not be possible to take two-hand controls into the hazard zone





#### TWO-HAND CONTROL DEVICE CLAUSE 5, ISO 13851:2019





#### Key

- 1 Input signal
- 2 two-hand control device
- 3 Control actualting device
- 4 Signal converter(s)
- 5 Signal processor(s)
- 6 Output signal
- 7 Logic unit





|                                                      | Туре |    |     |   |   |  |  |
|------------------------------------------------------|------|----|-----|---|---|--|--|
| Requirements                                         | I    | 11 | III |   |   |  |  |
|                                                      |      |    | A   | В | С |  |  |
| Use of both hands (simultaneous actuation)           |      | •  |     |   |   |  |  |
| Relationship between input signals and output signal |      | •  | •   | • |   |  |  |
| Cessation of the output signal                       |      | •  | •   |   |   |  |  |
| Revention of accidental operation                    |      | •  |     | • |   |  |  |
| Prevention of defeat                                 |      | •  |     | • |   |  |  |
| Re-initiation of the output signal                   | 0    | •  |     | • | • |  |  |
| Synchronous actuation                                |      |    |     |   | • |  |  |
| Use of category 1 (see ISO 13849-1)                  |      |    |     |   |   |  |  |
| Use of category 3 (see ISO 13849-1)                  |      |    |     | • |   |  |  |
| Use of category 4 (see ISO 13849-1)                  |      |    |     |   | • |  |  |
## MINIMUM DISTANCES FOR TWO-HAND CONTROLS







 $S = K \times T + C$  C = 250 mmwhere K = 1.600 mm/s

C = 0 mm if control actuators are shrouded



Where, for setting, teaching, process changeover, fault-finding, cleaning or maintenance of machinery, a guard has to be displaced or removed and/or a protective device has to be disabled [...], the safety of the operator shall be achieved using a specific control mode which **simultaneously**:

- a) disables all other control modes,
- b) permits operation of the hazardous elements only by continuous actuation of an enabling device, a two-hand control device or a hold-to-run control device,
- c) permits operation of the hazardous elements only in **reduced risk conditions** (for example, reduced speed, reduced power/force, step-by-step, for example, with a limited movement control device), **and**
- d) prevents any operation of hazardous functions by voluntary or involuntary action on the machine's sensors

### ENABLING CONTROL FUNCTION CLAUSE 9.2.3.9, IEC 60204-1:2020

- Manually activated control function interlock
- When activated allows a machine operation to be initiated by a separate start control
- When de-activated initiates a stop function and prevents initiation of machine operation
- It shall not be possible to defeat the enabling function by simple means





## THREE-POSITION ENABLING DEVICE FIGURE C.1, ISO 10218-1:2011





## EMERGENCY OPERATIONS CLAUSE 9.2.5.4 IEC 60204-1:2006





#### **Emergency stop**

- : Stopping hazardous motion as quickly as possible
- : Stop category 0, 1
- : Often by mushroom-type pushbuttons
- : Handles, wires, ropes, bars may be used



### **Emergency switching off**

- : Switching off electrical energy (e.g. direct contact)
- : Stop category 0
- : Often by main switches
- : Pushbuttons, wires, ropes, bars may be used
- : Switching off the incoming supply electromechanically **only**



 Machinery must be fitted with one or more emergency stop devices to enable actual or impending danger to be averted.

- The emergency stop function must be available and operational at all times, regardless of the operating mode.
- Emergency stop devices must be a back-up to other safeguarding measures and not a substitute for them.

## EMERGENCY STOP DEVICE CLAUSE 4, ISO 13850:2006





- The emergency stop device shall be designed to be easily actuated by the operator and others who could need to actuate it.
- An emergency stop device shall be located at each operator control station [...]
- It shall be positioned such that it is readily accessible [...]
- Measures against inadvertent actuation should not impair its accessibility.
- The actuator of the emergency stop device shall be colored RED. [...] the background shall be colored YELLOW.

# **EMERGENCY STOP FUNCTIONS ...** ... ON PORTABLE OPERATOR CONTROL STATIONS





 Confusion between active and inactive emergency stop devices shall be avoided by means that can include appropriate design and information for use.

For example, if a charging station for the portable operator control station is provided near a machine, and the emergency stop function is inactive when it is placed in the charging station, the emergency stop device should be made inaccessible.

## TECHNOLOGY OF SAFEGUARDING SEPARATE FROM DANGER BY MEANS OF SPACE OR TIME







Otto Görnemann Research & Development Tel.: +49 7681 202 5420 Otto.Goernemann@sick.de

