

Digital Integration in Machines and Process Industry

Giuseppe Augugliaro Dit - Lab. innovative technologies for safety

UNIVERSITÀ Politecnica Delle Marche

POLITECNICO

MILANO 1863

POLO TERRITORIALE DI

LECCO

TOR VERGATA

DEGLI STUDI DI ROMA

Rome, July 7th 2023 Inail, Via IV Novembre 144

Introduction

Points of interest:

- 1. Advanced probabilistic models
- 2. Monitoring network
- 3. Prognostic approach
- 4. Validation on representative cases

Goals:

- 1. Safe and efficient management of pressure equipments and civil infrastructures
- 2. Eliminate unnecessary or invasive maintenance actions to reduce operating costs

Design scheme

Design scheme

Monitoring of industrial machinery and structures

Methods: Physical test field - Reticular, bridge in reinforced concrete

Accelerometer and Acoustic Emission sensors

INTERNATIONAL SOCIAL SECURITY ASSOCIAT

Methods: prediction of degradation

Equipment history

1. historic monitoring of process parameters 2. Thickness control data

Models

- 1. Geometry
- 2. Corrosion law
- 3. Prognostic Model

Monitoring systems

1. Sensors (AE) 2. Sensors (MEMS)

Structure/Infrastructure

Prognostic Estimation of residual life time

- ✓ Thickness reduction is 2.8 mm with 95% probability and with the same probability it is expected to increase to 3.2 mm in 2017.
- $\checkmark~$ As of 2017, the real value is 3.15 mm.

Methods: prediction of degradation

Section on Machine and System Safety

SSa

Methods: Advanced structural modeling - Reticular structure

INAIL

issa MITERNATIONAL SOCIAL SECURITY ASSOCIATION Section on Machine and System Safety

Methods: sensors network

- Local processing
- Compact sensor node
- Significant reduction in cabling, weights, costs and power consumption
- Zero distance between the sensor and the reading electronics
- Use of industrial protocols
- Fully programmable remotely
- Self diagnostics

Monitoring of industrial machinery and structures

INAIL

Methods: pervasive sensors

INAIL

FORUM RICERCA

INAIL

Methods: data processing and management

- □ Extensibility → Possibility of dynamically adding new sensors or new data processing/display modules.
- □ Interoperability → Transparent management of heterogeneous sensors (accelerometers, piezos, etc) characterized by different data models.
- □ **Reconfigurability** \rightarrow Possibility to remotely control the configuration of the sensors and/or to redefine their behaviour.

Scalability \rightarrow Support for large volumes of data/devices.

Methods: data processing and management

INCIL

issa

INTERNATIONAL SOCIAL SECURITY ASSOCIATION

Section on Machine and System Safety

INCIL

MACAPRO

•))

Methods: data processing and management

Prognostic through vibrations:

- Corrosion
- Neural networks

Degradation Model:

 $x(t) = x_0 e^{-\alpha t} + \gamma(t)$ x(t) = stiffness at time t $x_0 = \text{initial stiffness}$ $\alpha = \text{degradation speed}$ $\gamma(t) = \text{noise at time t}$

f(t-4)f(t-3)

. . .

f(t)

 $\hat{x}(t+4)$

INTERNATIONAL SOCIAL SECURITY ASSOCIAT

Monitoring of industrial machinery and structures

INAIL

MAC4PRC

Methods: fileds of application

Pressure equipment integrity monitoring

Monitoring of industrial machinery and structures

INCIL

Methods: fileds of application

Civil structures/infrastructures integrity monitoring

MAC4PRO

Monitoring of industrial machinery and structures

Pressure equipment test scenario

- Leakage vessel and/or pipe
- Pump/turbine cavitation

Hydraulic circuit

- load curve «p»
- «p» in tanks and pumps
- «q» in the pipes
- «T» of water and air
- check closing/opening of valves
- simulate losses

Monitoring of industrial machinery and structures

- Pipes DN100
- Storage tank 2000 litres
- 2 steel tanks (1000 litres)
- Distributed SW/HW system for the control of each device
- Two-stage pressurization
 system

Monitoring of industrial machinery and structures

INTERNATIONAL SOCIAL SECURITY ASSOCIATIO

Configurazione Esecuzione Test Automatico Azionamento Manuale Carico Impianto Scarico Impianto STOP Load curve «p» ESEMPIO: STORIA DI PRESSURIZZAZIONE HPSYSTEM.IT Tank Pressure Testing System 16 TEUNDLODIE & BERVIZI DEI BIRTEM AVANZAT 30' 10' 14 10' 12 Ciclo di Carico Start Test Automatico Ciclo di Scarico Pressione [bar] Tempo (minuti) Pressione Modulazione Pressione Tempo (minuti) Tempo scarico (sec.) Pressione 10' 30' 4 2 Out Pompa 0 Bar Durata Durata complessiva 250 min Serbatoio 1 0 Bar Serbatoio 2 0 Bar 1

Measurement network

Valve for leaks activation

Nozzle of 1 mm

Low frequency AE transducers

High frequency AE transducers

Sensor nodes with accelerometers on board

MAC4PRO

5

Gateway

INTERNATIONAL SOCIAL SECURITY ASSOCIATION

30 minutes, pressure 5 bar

SSA INTERNATIONAL SOCIAL SECURITY ASSOCIATE

Results: physical test field – hydraulic circuit

MAC4PRO

Results: physical test field – hydraulic circuit

3 hours of monitoring

Civil structures test scenario

Seismic action

Frame on vibrating table

- frame in reinforced concrete
- test check
 - motion imprinted on the base
 - frame response
- damage

seismic sequence Amatrice-Norcia-Visso October 30, 2016 magnitudo of 6.0 (energy) peak ground acceleration: 0.86 g (Amatri

INCIL

peak ground acceleration: 0,86 g (Amatrice)

INTERNATIONAL SOCIAL SECURITY ASSOCIAT

Section on Machine and System Safety

INTERNATIONAL SOCIAL SECURITY ASSOCIATIO

INTERNATIONAL SOCIAL SECURITY ASSOCIATION

Rete di misura

MAC4PRO Sensors

- accelerometers (6)
- Acoustic emission (18)
- gyroscope (9)

Commercial Sensors

- accelerometers (9)
- AE Vallen (6)
- Optical markers (72)
- Linear Variable
 Displacement Transducer
- load cells

Results: reinforced concrete frame

Stazione Savelli, Norcia 30 ottobre 2016 – M = 6.5

Risultati: telaio in CA

Risultati: telaio in CA

INTERNATIONAL SOCIAL SECURITY ASSOCIATION

Real case: bridge Volto Santo (Holy Face)

Section on Machine and System Safety

ssa

Real case: Viadotto Volto Santo (Holy Face)

TOFT

TUEZ

1ssa

LASOT & TRANSCARDONE

ACQUERTORS ACCE

1.74

111

(and 0000m.8

TOF

SYSTEM 1000

TOF

INTERNATIONAL SOCIAL SECURITY ASSOCIATION

Section on Machine and System Safety

MS_UAD_1

ACQUISTONE ACCOUNTS

CANT DEDAMA

MS UND 2

WS UND 1

INAIL

Conclusions

- Tools for monitoring equipment and structures/infrastructures for safety purposes
- Use of different integrated technologies
- Experimental validation in two operational scenarios
- Real case experimentation (viadotto del Volto Santo)
- Contributes to the discussion on methods, installation costs, adaptability and durability of monitoring systems, robustness of damage and prognostic metrics

Thanks for your ... space

